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We present a new description of ordering and phase transitions in terms of 
genuine local connectivity, i.e., physical connections and disconnections which 
lead to global order and disorder, respectively. It is generally applicable to 
complex spin models. We apply it to a simple case of the d-dimensional 
Q-state general clock (GCL) model with two interaction energy parameters 
(0 ~<el ~<e2). This model was previously studied for Q = 6 in d =  3 by the Monte 
Carlo twist method. The following are the main results. There are novel types 
of ordered phases (called IOPs) which are ferromagnetic but dominated by two- 
or three-spin states and exhibit much softer behavior, with stiffness exponent 
r ,~ 1.2, than the low-temperature ferromagnetic phase, with ~, = 2, and one of 
their phase transitions occurs without symmetry breaking. The physical connec- 
tions and disconnections are expressed in terms of new variables, link (l-), hinge 
(h-), and vacant (v-) bonds. We introduce a new version of the GCL model with 
e2= oo (called RGCL model) which cannot be disordered, since it has no 
v-bonds. It is proved to be equivalent to the restricted SOS model for Q > 4 in 
the hypercubic lattice. Then we prove that at least one percolated phase of 
h-bonds exists at high temperature (at any temperature for e~=O) in the 
d-dimensional RGCL model for o o > d >  1. For the GCL model with e~ = 0  
where e2 < oo, we then prove the existence of it at low enough temperatures. 
Based on these results and from the numerical study mentioned above, we 
obtain that the IOPs are percolated states of h-bonds, and the phase transition 
without symmetry breaking is purely topological. Also, for the SOS models in 
d > 2  given by . ,~=Y.  [Hg-Hj l  k, we show there is a boundary kc (w,5) that 
separates them into two regimes, a prcroughening transition for k > k c and no 
transitions otherwise. An algorithm for the GCL model and order parameters of 
these percolated phases are given in terms of clusters of I- and h-bonds. The 
IOPs are also discussed in detail. 
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1. I N T R O D U C T I O N  

One is used to considering ordering and phase transitions in terms of order 
parameters. Naturally one should have a naive idea that the long-range 
order is a state in which a local connection between constituents extends 
over all the system. Since one is familiar with the notion of force, it is 
natural to have such an idea, but it is difficult to answer what the connec- 
tion really is in a general case. In an Ising ferromagnet, the parallel states 
of nearest-neighbor (NN) spins might be supposed to be connected, but 
they are not, as is well known. (~) Since this model at T =  c~ becomes equiv- 
alent to the random site percolation problem with concentration p = 1/2, 
both parallel states are percolating in three dimensions because Pc < 0.5 for 
any lattice.! ~) Therefore one cannot describe phase transitions in terms of 
such geometrical connectivity. It is our first aim to define genuine local 
connections and disconnections in a general case (which lead to order and 
disorder, respectively) and formulate the description of phase transitions in 
terms of them. We shall call these genuine quantities physical connections 
and disconnections. 

Since the long-range order is brought about by the physical connec- 
tions, the description based on local connectivity should be expected to 
give new and deeper insight into ordering and phase transitions. As a 
matter of fact, there has been great progress for the ferromagnetic Potts 
model. This approach led to a new percolation model, the so-called 
random cluster model (2) (or correlated bond percolation model(3)). Further 
making use of the transformation between two models led to the so-called 
Swendsen-Wang algorithm. (4) Since the algorithm accelerates the equilibra- 
tion enormously, it has advanced not only the study of the static properties 
of phase transitions, but also that of critical dynamics, t3"5) However, the 
concepts of physical connection and disconnection have been defined only 
implicitly in the studies done so far. Thus one cannot generalize them to 
complex models with interaction energy parameters more than one. The 
present approach from local connective force to long-range order is shown 
to be indispensable to the description of nontrivial intermediate phases 
which can be expected in such complex models. It leads to the proof that 
such ordered phases are a novel type of percolated state. 

In complex systems, there are some cases in which it is difficult to find 
order parameters and further even to identify phase transitions themselves. 
There has been great interest in them. Many such systems are seen in three 
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dimensions, such as the antiferromagnetic (AF) Potts model, C7-9) the stacked 
triangular AF Ising model, I1~ the six-state general clock (GCL) 
model, (12"13) and so on. ~'4) The Q-state GCL model which we consider in the 
present paper becomes, by changing interaction parameters, the 
ferromagnetic Potts model, the ordinary clock model, and even a highly 
degenerate model which is considered equivalent to the three-state AF Ports 
model for Q = 6.  t12) A series of studies of three-dimensional (3D) models by 
the Monte Carlo (MC) twist method t8'~'-'~3"~6~ have revealed a novel type of 
ordered phase (called incompletely-ordered phases, IOP). t8"11-13~ In the 
Q =  6 GCL model, t~3~ they are ferromagnetic but are dominated by two- or 
three-spin states (which are adjacent to each other) and are soft in stiffness, 
whereas the ordinary ferromagnetic phase is dominated by a single-spin state 
and is rigid. Thus the latter is called the completely ordered state (COP). It 
is striking that one of the phase transitions of the IOPs is not accompanied 
by symmetry breaking. It has been conjectured that the IOPs are a novel 
type of percolated state and the phase transition of interest is characterized 
only by percolation, i.e., is purely topological. 

It is our additional purpose to verify the " _~3) conjecture~ on the 3D 
Q = 6 GCL model mentioned above, on the basis of our description where 
physical connections and disconnections are represented by bond variables 
which are newly introduced. The verification is attained through some 
proofs on a new version of the GCL model which cannot be disordered. It 
turns out that the percolated phases are described only by kinds of bond 
variables which are hidden variables, as its percolation. 

The paper is organized as follows. In Section 2, introducing the 
Q-state GCL model, we briefly review the properties of IOPs and their 
phase transitions for Q = 6 in d = 3 obtained by the MC twist method. In 
Section 3 we first define the physical connections and disconnections in the 
GCL model and describe the partition function in terms of them, intro- 
ducing bond variables, and further in terms of their clusters. In Section 4 
we introduce a restricted GCL model and prove that there exists at least 
one percolated state of a novel type in it, based on the preceding theorem 
(which is also proved there). In Section 5 we prove that such a percolated 
state survives in a certain low-temperature range at a special point of the 
energy parameters of the GCL model. In Section 6 we verify the conjec- 
tures previously made on the 3D Q = 6 GCL model on the basis of the 
theorem in Sectioo 5 and the MC study. We also obtain some properties of 
the SOS models by making use of its equivalence with the GCL model in 
a limit. In Sections 7 and 8 the order parameters of the percolated states 
and algorithm are given in terms of clusters. We give some comments on 
related models and detailed discussions on the IOPs in Sections 9 and 10, 
respectively. The final section is devoted to a summary. 
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2. THE GCL M O D E L  A N D  THE M O N T E  CARLO RESULTS 

We define the Q-state G C L  model  (~5) on a d-dimensional  hypercubic  
lat t ice which is buil t  up out  of  edges and sites where a spin a lies at  
each site. We assume the latt ice is isotropic  with free bounda ry  condi t ions  
and has N sites. The spin variable a~ at  the i th  site takes Q different 
states labeled by 1, 2 ..... Q which are associated with the clock angles by 
O~=2rrai/Q. We consider  only the models  with neares t -ne ighbor  ( N N )  
interact ions and  no external  field. The spins interact  with their NNs ,  
depending on their relative angle 10,--0jl with m o d  2n, thus ao.= lai-ajl 
with m o d  Q, which is defined by 

[ (2/2 ] 
V(a/ j )=  ~ e,,fi(cr,j,m) (2.1) 

m = 0  

where di(cr, m) is the Kronecker  delta  function. Here,  since a u takes 
[ Q/2] + 1 independent  states, where [ Q/2] is the Gauss  nota t ion ,  we have 
l imited cr o in the range from 0 to [ Q / 2 ] :  

[QI2] 
~(c;U, m) = I (2.2) 

m = O  

Then one has [ Q/2] independent  energy parameters  e,, ,  setting eo = 0. One 
has e,, oc 1 - c o s ( 2 r r m / Q )  for the o rd inary  clock model.  
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Fig. 1. Phase diagram of the 3D Q = 6 GCL model with e 2 = 1.0, obtained by the MC twist 
method; DP, COP, and IO1 / stand for disordered, completely ordered, and incompletely 
ordered phases, respectively. Solid and dotted curves indicate the second and first order tran- 
sitions, respectively. Broken lines are T= 1/log 2 and T= ( 1 -  e~)/log 2, which are obtained 
from po/pv= 1 and p~/p~ = 1, respectively; these are explained in Section 6. See the text and 
ref. 13 for details, except for the broken lines. 
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Applying the Monte  Carlo twist method,  Ueno and Kasono  studied a 
simple case of  the Q = 6 G C L  model  in which e2 = e3 = 1 and 0 < e, < 1, on 
the simple cubic lattice. We review it briefly; see ref. 13 for details. Figure 1 
shows the phase diagram. In 0.5 < e, ~< 1, there is a coexistence line between 
the C O P  and the disordered phase (DP) ,  as expected, since e] = 1 is the 
ferromagnetic Pot ts  model. Two kinds of  I O P s  exist at and near  el = 0. 
Two-spin states are dominant  in the IOP1,  three states in the IOP2,  as 
shown in Fig. 2. Since these dominant  states are adjacent to each other, 
both  the I O P s  are ferromagnetic. As seen from Fig. 2, the I O P 2  does not 
differ in uniform symmetry  f rom the COP.  Thus the phase transition 
between these phases is not accompanied  by symmetry  breaking. 

In spite of  being ferromagnetic,  both  the I O P s  exhibit a large 
qualitative difference in stiffness when compared  with the COP.  To  see this, 
it is most  effective to use the stiffness exponent  if(T), which is defined as 
follows in the stiffness free energy, which is the increment of  the total free 
energy when twisted by imposing appropr ia te  boundary  conditions: 

AFL(T) = A ( T )  L ~'(r~ (2.3) 

for L ~ oo. The ~p(T) represents not only a measure of  stiffness of  the long- 
range order, but also determines the critical point or line by ~(T)  = 0 from 
the data of the system of finite sizes; note that  ~, < 0 indicates disorder. The 
C O P  is as rigid as ~, = 2, which is at tr ibuted to interfaces, whereas both the 
IOPs  are as soft as ~, = 1.2. However,  the IOP1 depends on the twist angle 
r ~ -~ 1.2 for r > n/3 and ~k < 0 at ~b = n/3, distinguishing it from the IOP2.  

(a) 

, I I , 
1 2 5 6 

(b) 

, l l 

I 2 3 5 6 

Fig. 2. Illustration of one-spin distribution function (probably vs. clock state) of (a)the 

IOPl and (b) the IOP2, in the same model as in Fig. l, obtained by the Monte Carlo twist 
m e t h o d  (a f te r  ref. 13). 
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The disorder-like behavior at @ = n/3 indicates that the IOP1 is dominated 
by two adjacent spin states. 

It is quite interesting to look at spin configurations in the IOPs. 
Figure 3 shows them in a cross section. Although the clusters are geometri- 
cal there, they are obviously percolated in the IOPI, but it does not appear 
that clusters in two subdominant spin states are percolated in the IOP2, 
though there might be a possibly of the percolation in the 3D space. It has 
been suggested that the COP-IOP2 transition is of second order and the 
possibility of first order is considered least probable. Then, assuming the 
second-order transition, Ueno and Kasono conjectured for the IOP2 that 
the clusters in the subdominant states should percolate in the system, by 
considering that it is the only possible behavior that gives a macroscopic 
difference between these phases. Because of the reason mentioned in 
Section 1, the percolated clusters that have been conjectured should be 
physical ones. 

Finally, we generally define the COP and IOPs for the regular ferro- 
magnetic models with discrete symmetry. The COP is the ordered phase 
that has ~ = d - 1  > 0  and is dominated only by a single spin state. 
Probably the former condition includes the latter. We assume there are no 
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Fig. 3. Spin configurations in a cross section of (a) the IOPI at T = 0 . 5 5  and (b) I O P 2  at 
T =  1.2, m the Q = 6 G C L  model with e~ = 0.1, e2 = 1, obtained by MC simulations. See ~ s  13 
~ r  details. 
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ordered phases in which plural spin states are dominant in spite of 
= d - I .  We define that the IOPs are those phases which have 0 ~< @ < 

d -  1 and ~ 4= d -  2 and are dominated by plural spin states. In the regular 
AF models wlxere no spins are competing, the COP is characterized, 
together with ~ = d -  1, by a single Fourier component of the spin moment. 

3. FORMULATION 

3.1. Physical Disconnections and Connections 

We consider the physical disconnections and connections in the 
Q-state GCL model, since it contains many models. Our interest is in the 
models that have more than one kind of physical connections, that is, 
energy parameters more than two, so that the models are limited to Q > 3. 
For simplicity we mainly consider below a simple case of this model where 
0<e l<e ,_  and emme 2 for m>~2. Using Eq.(2.1), let us express the 
Boltzmann factor for V(a) in the following way. 

[ Qt2 ] 
e-PV~)=6(a,O)+e-X'6(a, 1)+e - ~  ~ 6(a,m) (3.1a) 

m = 2  

= A{ p16(a, O) + ph6(a, 1) + Pv} (3.1b) 

where fl = 1/T, K,,, = fit,, > 0 in units of k B = 1, and 

Apl= 1 --e -x2, Aph=e- tq- -e  -&, Ap,.=e - ~  (3.2) 

Here A is the normalization constant to satisfy p~+ph+pv= 1. Note 
Pt/> Ph in the present study. 

For a given spin configuration ~ = {a;} let us expand the Boltzmann 
measure 

/~(#) = ]--I exp[ - f lV(a i j ) ] /Z  (3.3) 
<0> 

with respect to the three terms in Eq. (3.1b), where (0 ' )  represents a pair 
of NN sites and Z = Z ~  I--l<~> exp[ - f lV(au)  ] is the partition function. It 
is convenient to regard these terms as new variables, calling them bond 
variables (the definitions will soon be given) and to put one of them with 
the corresponding probability on each edge of the lattice. Then #(0) may 
be expressed by a series of graphs made up of these bonds. 

Since Pv =Pv Y~203 6(a, m), the bond for the last term in the curly 
brackets in Eq. (3.1b) occurs with equal probability Pv for any NN relative 
pair-spin state a0.. Therefore this bond makes no difference among all the 



848 Ueno 

states of a~j, hence among the NN spin states (ai, aj). Therefore this kind 
of bond does not lead to any order and thus represents disconnection 
between neighboring spins. We call them vacant bonds henceforth. 

Since the other kinds of bonds make differences among the NN 
relative pair-spin states, they represent physical connections. One is a link 
to form a cluster in the same spin state which occurs with probability p~. 
We call it a link bond. The second connects, with probability Ph, two 
clusters in adjacent states; thus this kind of bond extends, producing 
surfaces. Since the last plays a role like a hinge connecting two clusters 
with the limited angles, we call it a hinge bond. We should remark that the 
link and hinge bonds exchange their roles in case of e] < 0 <em (m >~ 2). 

The above definitions can be easily applied to other models. This is the 
basic idea that enables one to describe ordered phases and phase transi- 
tions in terms of local connectivity. 

3.2. Description in Terms of Bond Variables 

To make the above expansion in an explicit form it is convenient to 
introduce the bond variables c4'5) n U, which take three states, denoted by 
{l, h, v} for {link, hinge, vacancy}, respectively. These bond states corre- 
spond to the above three terms in Eq. (3.1b). Henceforth we label these 
states simply by no.= l, h, v and use the abbreviations l-, h-, v-bonds for 
them. Denoting by g =  {nu} a graph made up of three kinds of bonds 
given #, one then gets 

A ~ 
= - ~  ~ I-I {Ptf(ao, O) A(no., l) 

- < q >  

+ p/,6(a o, 1) d(n u, h) + pvd(nij, v)} (3.4) 

where E is the number of edges in the lattice and 

d(no.,ot)=S1 for n u = a  (3.5) 
otherwise 

with 0c = l, h, v. Here {i/} in p(r/; 6) are restricted only to those compatible 
to ~. 

We expand Eq. (3.4) first with respect to 0, dividing the lattice graph 
s into three parts: s where 6(g u, 0) = I; s ), where fi(g0", 1) = 1; 



Percolated State in General Clock Model 8 4 9  

and the rest ~c(5) (= ~-~o- - -~a l ) -  One can also divide r~ into no in L#o 
and ~] in ~1. Then one gets 

/z(~; 5) oc/~o(~o; #)/~i(~ ;5) I-I p~,A(n U, v) (3.6) 
<0"> e ~'c(s) 

The definitions of/z o and /Zl are given below, including the expressions 
expanded further with respect to ~: 

1 
Po(ao ; 0 ) = Z o  I-I (plA(n U, l)+ pvA(nu, v)) 

<0"> �9 ..c-"o(#) 

- Zo ev \~-~/ ( 3 . 7 )  

[here Eo(5) is the number of edges in ~o and B I the number of/-bonds in 
~o(O)] 

I 
I-I (phA(nu, h) + pvA(ng, v)) 01(~] ; 0) = ~  <o> � 9  

l e w. (ph~ "h'a'' 
= po, , ( 3 . 8 )  

Here El(#) is the number of edges in ~e~ and B h the number of h-bonds in 
~(0).  The Zo, Z~ are appropriate normalization constants. The edges of 
are decomposed as 

E = Eo(O) + El(0 ) + E~(#) = B,(~0) + Bh(rT~) + B.(~) 

where Ec is the number of edges in .oc#c and B~ is the total number of 
v-bonds in ~(0). 

Eventually Eq. (3.6) can be simply written as 

1 s n l  p(g; 0) = ~  (Apl) ' o (Aph)Sh(,~l (Ap~)B,,(a) (3.9a) 

_ 1  (pl~ B'(iiO) (ph~ Bh(~l) 
(3.9b) 

\ p o e  

: I  (P"Ss~(~' (P~ "~''i, (3.9c) 
Zt \P t /  \ P #  

where Z= = Z/(Ap=) e. For Ph = 0 ,  where e~ = 1 (i.e., the Potts model), only 
the graphs g with El = 0 (hence B h = 0 )  contribute to p(#), leading to the 
random duster model. (2~ For ph>O and close to Pt (>>Po), graphs with 
l a r g e r  B h are strongly favored. 
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3.3. Description in Terms of Clusters 

Let us first introduce two kinds of physical clusters that are connected 
only with one kind of bond: /-bond clusters and h-bond clusters. In the 
former, /-bonds in a cluster connect to each other by possessing only 
common sites. In the latter, however, since each cluster connects two 
/-bond clusters that are common to all the h-bonds in it, the bonds in a 
cluster possess a common site or are parallel to each other at the distance 
of the lattice constant (see Fig. 4). 

It is useful to introduce new lattice graphs L~l(~o), -~/,(~t), and Zav(~ ) 
that consist of the edges occupied only by l-, h-, and v-bonds, respectively, 
for given t?. Let pt and Ch be the cluster graphs of the p th / -bond  and ~th 
h-bond clusters, respectively. We assume these lattice and cluster graphs 
include the sites within them and at their boundaries. Then the lattice 
graphs are the sets of these clusters: .L~at= {p,}, s Then the 
numbers of bonds are also given in terms of clusters as 

~' ~-~ (3.10) 

Bl,(fit)= ~ br 

where b~,(..L~) is the number of / -bonds in the / l th  cluster and br the 
number of h-bonds in the ~th cluster. 

Next, we classify degrees of spin freedom from the viewpoint of 
clusters, noting that a spin is located at a site. The spins in each /-bond 
cluster are described as a cluster spin r~,. There are other spins that cannot 

1, ] 
f 11 

I 

2h [ 4 h 

. 3/ 1 "b ] 

Fig. 4. Graph of a bond configuration in terms of clusters. Solid and broken lines are 1- and 
h-bonds, respectively, while v-bonds are blank. There are three /-bond clusters and four 
h-bond clusters; the numbers denote these clusters. Sites a and b are one-site clusters where 
b is isolated. 
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be described by these cluster spins, i.e., their sites are shared in common 
only by h- and/or o-bonds as shown in Fig. 4. Since each spin on these sites 
behaves as an individual, we call them one-site cluster spins. Some of them 
interact with other cluster spins, whereas others are isolated and have only 
v-bonds. One-site clusters exist in ~r  = La-L#~; here the boundary sites of 
L~ are not included. An isolated one-site cluster exists at every internal site 
of ~v, that is, in ~ o - '  - Aeo - 8L#,, where 8~o represents the boundary sites 
o f ~ .  

To express the partition function in terms of clusters, we first decom- 
pose the bond sum in Eq. (3.4) as 

E = E E FI Ea(..,  l) 
~(a)  -~lfa) ..~h(a) ( / j )  e. '2) n U 

x 1--[ Ezi(nv, k) 1-I ZJ(nu,  v) (3.11) 

Then we express the spin sum in terms of cluster spins r~ which include 
one-site cluster spins, 

E=Z H Z H Z (3.12) 
-~ l  II E--~'I r v / t  ~ .~le r# 

A set of spin and bond configurations (#, ~) can be expressed by a set of 
a cluster configurations and cluster spins (.L~/,-L#h; ~) ,  where ~'~ includes 
one-site cluster spins, which is a one-to-one correspondence. Then, using 
Eqs. (3.9c), (3.11), and (3.12) and r , , =  Ir,,-r~l (mod Q), one gets 

~ #(n; i f ) = 1  (p,,~B,(~e,) (p  ,~a,.(~v) 

xH y. H 6(~.~, l) 
# r ,  ( # v )  

=2_ z 

x I-I Z I-['c~(r#,, l) (3.13) 

where Nl,(~o) is the number of isolated one-site clusters in -C#'v, and 
&a, = .C# - .C~a',. Here i l--[<z,> is the product over a neighboring pair o f # t h  
and vth /-bond clusters except the pairs that include isolated one-site 
clusters; the clusters in each pair are restricted to those directly connected 
by h-bonds. 

822/80/3-4-23 
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3.4. Characterization of Disorder and Order 

Some /-bond clusters and one-site clusters are surrounded only by 
v-bonds. The remaining ones form clusters of clusters connected by h-bonds, 
which we call joint clusters. Then each joint cluster is also surrounded only 
by o-bonds. All these clusters surrounded only by v-bonds are completely 
disconnected with each other, that is, isolated because the surrounding 
o-bonds do not prevent each of these clusters from taking any spin states 
independent of the other clusters. 

From the definition of the physical disconnection, disorder is defined 
to be the state where only the v-bonds are dominant; that is, there are no 
infinite clusters of the l- and h-bonds. If isolated custers are finite, they can 
change their states with finite probabilities because the free energy barriers 
necessary for the changes are finite. Then it is obvious that long-range 
order is a state where at least one infinite cluster is present in thermal 
equilibrium. 

To discuss the difference among percolated states, it is convenient to 
introduce colors which represent the spin states of clusters. The /-bond 
cluster/x~ takes Q states corresponding to the Q spin states r~ = 1, 2,..., Q. 
We call these states colors of /-bond clusters, denoting them by c(1), 
c(2) ..... c(Q). Then the h-bond duster can take the Q different colors inter- 
mediate between the corresponding pair of / -bond colors, which we denote 
by c(12), c(23) ..... c(Q1). Then the disorder is white, whereas the COP has 
one of c(i) colors with tints of its neighboring c(ii + 1 ) colors, say, c(2) with 
c(12), c(23), and so on. If there exist percolated phases of h-bonds, they are 
also characterized by both kinds of colors. If there could be a percolated 
state of h-bonds with two colors, say c(12) and c(23), which corresponds 
to the IOP2, then there might occur a phase transition between the COP 
and a percolated phase of h-bonds at which any color symmetries are not 
broken. These will be shown to exist and explained in Section 6. 

4. PROOF OF PERCOLATED STATES IN THE 
RESTRICTED MODEL 

4.1. Physically Connected Models 

It is of considerable interest to consider those models in which no 
v-bonds can exist at any temperature, that is, Pv = 0. In the six-state GCL 
model one can get it by putting only es = m or e2 = e3 = oo. Then, as seen 
in Eqs. (3.7) and (3.8), thermal fluctuations cannot make any distribution 
of {~} given t?. Thus g is uniquely determined by ~, though the corre- 
spondence is one to many. Therefore two connections, physical and 



Percolated State in General Clock Model 853 

geometrical, agree with each other. Since l- and h-bonds connect spins 
physically and any bond graphs consist only of them, these models exhibit 
only physically connected states, hence no disordered phase. Thus we 
may call them physically connected (PC) models. In general one can obtain 
known models of the PC type whose original models have interaction 
parameters more than one by lifting some of them to infinity, leaving at 
least one finite. 

The solid-on-solid (SOS) models of crystal surfaces t~7) are PC-type 
models. They are given by a single Hamiltonian, 

Wsos=el  Y' [Hi--Hjl k (4.1) 
<u) 

where H; is any integer. Here k = 1 and 2 correspond to the absolute SOS 
and discrete Gaussian models, respectively. In Eq. (4.1) the largest energy 
parameter e,,=elm k with m =  IHi--njl diverges for m ~ .  In case of 
k =  ~ ,  only m = 0 ,  1 are allowed, which is the restricted SOS (RSOS) 
model.I ~8) 

In any SOS model the variable H; is single-valued in the sense that the 
height at an arbitrary site does not change after a walk around along any 
closed path. Such singleness also exists in the present GCL model of PC 
type with Q > Q0, which is obtained by putting e2 = e3 = oo. Qo is equal to 
the number of sites on the elementary face of the lattice; thus Qo 1> 3 in 
general and Qo = 4 for the hypercubic lattice. Then the relative NN spin 
states are restricted only to a 0. = 0, 1. Thus we call this model the restricted 
GCL (RGCL) model. In this model, height can be introduced as follows. 
Given 0, on an arbitrary path from one arbitrary site i to another 
site j, one defines the difference given by aj--ai plus rn~= rn~(Q ~ 1 ) -  
m,.j(1 ~ Q); here m g ( Q ~  1) and too.(1 --* Q) are the times that ag changes 
from ak = Q to 1 and from 1 to Q, respectively, when one proceeds all the 
way along the path. Since this is independent of the path, using this dif- 
ference, one can transform aj to the height Hj=aj  + mjQ, where mj = mjo, 
assigning the height at the origin of sites to the origin of the height (m~ = 0 
at i=0) .  However, for Q<~Qo this singleness is broken because vortices 
can be generated. Thus we have the following theorem. 

T h e o r e m  1. The RGCL model with Q >  Qo in d >  1 is equivalent 
to the RSOS model, where Qo is the number of sites on the elementary face 
of the lattice. 

The singleness of the variables gives simple but crucial graphic 
features. In d = 2 ,  it requires that any connected line of h-bonds (or step 
contour) have no end, namely, be closed or terminate at the free bound- 
aries of the system. In d > 2 ,  a (d-1)-dimensional  surface of h-bonds is 



854 Ueno 

closed or percolated, both with no defect on the surface. This is also valid 
for all other SOS models, though one has to consider the surfaces made up 
of different kinds of h-bonds with various differences. The above statement 
is valid also for GCL models of PC type other than the RGCL model, so 
long as the singleness holds. Since only percolation of h-bonds can destroy 
the COP (or the flat phase), we immediately obtain the following theorem. 

Theorem 2. There can exist only the COP and/or at least one 
h-bond percolated state in d-dimensional classical models of PC type with 
discrete single-valued variables for d > 1. 

It is interesting to compare the present theorem with the established 
results of the SOS models in d =  2. As is well known, the SOS models 
undergo a roughening transition (;v-~9) between the rough and flat phases 
which is in the Kosterlitz-Thouless universality class. (1~ It is obvious 
that all the step contours are closed in the flat phase, whereas some are 
percolated in the rough phase. In addition, the rough phase has the 
translational symmetry of the Hamiltonian (4.1), which is invariant for 
{Hi} ~ { H ; +  AH}, where AH is an arbitrary height. Thus, it follows that 
step percolation of every color occurs in this phase. 

4.2. Proof of h-Bond Percolated States in the RGCL Model  

We prove the following theorem on the basis of Theorem 2. 

Theorem 3. There exists the COP at T,e, el and at least one 
h-bond percolated state at T>>e] in the d-dimensional Q-state RGCL 
model with o9 > d > 1 and Q > Qo. 

It is obvious that the COP exists at T =  0 because Pl = 1 and Ph = 0. 
TO prove the absence of the COP at T>>el, we begin with T =  oo, where 
pt=Ph = 1/2. Before going to the proof, we outline its scenario. We first 
choose arbitrary one of the /-bond configurations in the COP. Let us 
denote it by s (It, lt, 21,...), assuming that only It become an infinite 
cluster for N--* oo. In order to get a bond configuration of an h-bond per- 
colated state to be compared with, we replace all the/ -bonds except some 
in 11 by h-bonds, leaving all the finite clusters as they are. Then we calculate 
the number of all the possible spin configurations in a given restricted 
phase space for each of the pair of bond configurations, imposing the 
boundary condition that all the spins at the boundary of 11 are in a single 
spin state. We finally show that the relative probability of finding the COP 
vanishes for N--* oo compared with the h-bond percolated states. 

Let us first concentrate our attention on 1 I in s for N < c~. When the 
boundary condition with a fixed spin state is given for the cluster, then this 
/-bond cluster can take only one spin configuration. 
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Fig. 5. Examples of h-bond configurations in bond graph I t, solid and broken lines are 
I- and h-bonds; the boundary sites are fixed in a same spin state (a = 2). (a) All the h-bonds 
form a single set, and the spin at every internal site of sublattice B (denoted by circles) can 
take states t and 3, while that in sublattice A is fixed in state 2. (b) The h-bonds is separated 
into two sets, and the assignment of spin states is made independently in each set so that the 
spin configurations are maximum. 

Next we replace all the /-bonds in It by h-bonds except some / -bonds  
that have the boundary  sites; the exclusion is made to satisfy the boundary  
condition. Then every internal site of  I I has z h-bonds except the one that 
has some of  the nonreplaced/ -bonds;  here z is the coordinat ion number  of  
the lattice. Let us divide all the sites into two separate sublattices, as shown 
in Fig. 5. Having the boundary  spins fixed in state 2, we count  the number  
of  possible spin states in the following two cases of  bond  configurations for 
which different restrictions to spin states are made. In one case where the 
h-bonds form a single nonseparated set as shown in Fig. 5(a), every spin in 
the A sublattice is kept in state 2 and the spins in the B sublattice can take 
states 1 and 3. In the other case where the h-bonds are separated into 
plural sets as shown in Fig. 5(b), we assign spin states independently in 
each cluster so that the number  of  spin configurations is the maximum. The 
number of  sites that have two degrees of  spin freedom is given in any case 
in the form 

N~ = 2 (hi -- ,db,) I> 0 (4.2) 
Z 
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where Abt is the correction caused by the boundary condition. Then the 
number of spin configurations in the replaced h-bond cluster of I~ subject 
to the fixed boundary condition is larger than or equal to 2 ~/2 in the 
restricted phase space. 

Since the pair of bond configurations except 11 under the above bound- 
ary condition have the same number of spin configurations, the relative 
number of spin configurations for one bond configuration of the COP to 
the corresponding one of the percolated state subject to the restricted phase 
space is smaller than or equal to 

2- NIl2 (4.3) 

In the infinite cluster which is compact except at the phase transition point 
of second order, Abe/b1= O(N -l+l/d) vanishes. Thus (4.3) vanishes for 
N--* oo. In the same way we make the bond replacement for Ii of the other 
bond configurations of the COP. Then the above result holds true for any 
pair of bond configurations of the COP and the percolated state. Further 
removing the boundary condition and the restriction of phase space makes 
the percolated state favorable. Therefore there is no probability of finding 
the COP at T =  oo. Then one gets at least one h-bond percolated state from 
Theorem 2. 

When el = 0, since p~ = Ph = 1/2, it is obvious that one has no COP at 
any temperature. 

It is easy to extend the above proof to finite temperatures. Since the 
relative weight of the /-bond to the h-bond is pt/ph=e x', it suffices to 
modify (4.3) by multiplying by exp(K~zNx/2). Then at least one h-bond 
percolated state exists always above the temperature which satisfies 
1/2 e-'K~ < 1, i.e., T/el>z/In2. 

5. PROOF OF THE PERCOLATED STATES IN THE GCL MODEL 

We examine whether or not h-bond percolated states are stable at the 
presence of v-bonds. Based on Theorem 3, we give a proof  of the following 
theorem in the simplest case of el = 0 (i.e., p / =  p/,) where no COP exists. 

Theorem 4. Percolation of h-bonds occurs at T ~  e2 in the d-dimen- 
sional Q-state GCL model with el = 0  for oo > d >  1 and oo > Q >  Qo. 

To this end we first define the v-bond cluster as the one made up of 
only neighboring v-bonds that possess a common site or are parallel to 
each other at the distance of the lattice constant. The v-bond clusters them- 
selves have no meaning as connected objects, but they indicate separating 
/-bond clusters and h-bond clusters or making defects in these clusters. 
Thus, if there is no probability of percolation of v-bonds [P~(oo )=0 ] ,  
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it is certain that some ordered phase exists, though Po(oo) > 0 is not a suf- 
ficient condition for the disorder to occur. 

Let X be the coordinate of an arbitrary edge in the central part of the 
system and n x the bond variable at ,t". We assume that the v-bond at X 
belongs to a v-bond cluster X~ which has bx v-bonds, given r~. Here .t:, 
represents a graph. Then the bond graph s can be written as .Le o = 
(Zo,~OX), where ~X=( lo ,2o , . . . )  is the graph that consists of all the 
v-bond clusters except .t:, in ~. The probability of finding a v-bond at X 
that belongs to any cluster of size s is given by 

P~(s) = ~  ~ /z(fi; ~) 3(bx(~), s) (5.1) 
e ~(e) 

Using Eq. (3.13) and p t=  Ph, we write this in terms of clusters as 

1 z . B , , f w . )  
QA,,,,u'~, (P.) 6(bx, s) ?o(s)= Z2 X 

.~l r G ,&Pie 

x r-[ z 1-I ~ 8(ru.. 1) (5.2) 
/~ ~ .LP~,~ r u (,uv) 

Here we have used Z~eh~,,c = ~-%=-se, c. Let us divide every quantity in L#~ 
in Eq. (5.2) into two parts of Xo and .W x. First the summation over ~ is 
separated as 

X = X X' (5.3) 
_% .~x x~ 

where Z}~ is over X,, while L,a x is fixed. Then 

By (s + bx(Xv) ' x x = N~s(.L#v)=N1s(ZPo )+n~s(X,,) (5.4) 

where BoX= B v - b x ,  and N x and his are the numbers of isolated one-site 
clusters in .WoX and Xv, respectively. Then from Eqs. (5.1)-(5.4) and (3.13) 
one gets 

Pv(s) Zt .z, 2 Q ux ~,x=~,, \ P t /  

x • '  Q",.(Po~bX6(bx, s ) 
x, \ P #  

x 1"I E I-Iid)(~'~v , 1 )  (5.5) 
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Since isolated one-site clusters can exist only inside every v-bond cluster, 
one gets n]s(Xv)<2bx/z. Then it is easy to get 

~' Q""(x~ s) < Q2S/z ~, 5(bx, s) 
x.  x,. 

< QZ,/_, ~ ~(bx, s) (5.6) 
x.  

Note that the last sum in Eq. (5.6) is free from the restriction due to 5e x 
Using N~X(s) =- ~x, 6(bx, s), one gets 

1 ~x  1-I Z H i 6(vu~, 1)  v(s) z e< (,o e 

• ) (5.7) 
\P t /  

Here ~ x  is the sum over/-bond graphs except those that include X. The 
degrees of bond freedom and spin freedom in X, are taken out of the sum- 
mation in the RHS of (5.7). Suppose we recover these degrees of freedom 
in the remaining and make all the possible bond configurations in Xo that 
consist only of / -  and h-bonds. Let Ix be an arbitrary one of those/-bond 
graphs in X,, previously occupied by v-bonds. The number of those graphs 
is more than one for s > 1. Let s denote an arbitrary one of the/-bond 
graphs (in .s that include l x. Then one gets Z~e~y>~ x, for s >  1. Then 
one gets the following inequality: 

1 2 x  2 QNX(P~ e I-[ 2 I-[i5(r~,~, l) 
Zt.~ t ~,,x=_~,~ \P t /  ~ e ; ~  ~. <~,O 

1 (pv )  n~' i-[i 
< Z  E E QU,, I-I E J(ru, ,1)  

__1 z (,,7 z,~, Z 1-I Z 1-I 5(~,,1) 
~ o = _ _ % \ P t /  ~=_a" ru </,~) 

x 1-I Z E l - , ~ ( - ~ - ,  v)] 

<1 (5.8) 

where &atx c = &a _ .~atx" Note 

Z = Z 
..9"x ~_ ~ic -% ~- --q'Ixc 
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To get the third and fourth lines, we have used Eq.(3.13) and 
Za  Z,~P(~; # ) =  1, respectively. Then Eqs. (5.7) and (5.8) lead to 

pv(s  ) < Q2S/z (PvX)S umax(s ) (5.9) 
\P~/  

It is easy to calculate the upper bound of Nine(s). Let us construct a 
cluster of size s by starting with a seed bond at X and putting bonds one 
by one on the constructing cluster. The second bond is put on one of the 
neighboring edges of the seed. Let z, be the number of N N  v-bonds that 
form a cluster, which is different from z. The third bond has z v - 1 possible 
edges to proceed, but after that each bond does not necessarily have z v - 1 
possible edges. Thus, assuming that each bond has z v -  1 possible edges to 
proceed, one is led to an overestimate of NmaX(s) given by z v ( z , - 1 )  s -  ~; 
this includes also the overestimation that comes from different orders of 
construction and starting from different edges. Then one gets 

P~(s) < Q2~/-'z~(zv- 1)~-I/(eX-' - 1 )~ (5.10) 

For s ~  oo after taking the limit of N ~  0% Pv(s) becomes vanishing for 
K 2 > ln[ 1 + (zv--1)Q2/_.], and hence any h-bond percolated state is not 
destroyed. For the hypercubic lattice one has z~ = 6 in d =  2 and z,, = 12 in 
d =  3 because v-bond clusters have not only NN, but also N N N  edges. 
Therefore, for Q = 6 there exists at least one h-bond percolated state always 
below T/e2 "" 0.329 in the simple cubic lattice and T/e2 ~-0.387 in the 
square lattice. Since both z and z, depend on d, diverging for d ~  oo, thus 
the percolated state disappears for d ~ oo, and so for Q --* oo. We note that 
Q--. oo does not lead to the ordinary plane rotator model in the present 
case. 

6. C O M P A R I S O N  WITH THE MONTE CARLO RESULTS IN d = 3  

6.1. lOPs of the Q = 6  GCL Model  

We have proved Theorem 4, but it can tell neither what color an 
h-bond percolated state has nor how many such states there are. However, 
making use of Theorem 4, we can obtain them from the numerical results 
of the six-state GCL model in the sc lattice previously obtained by the MC 
twist methodJ TM 

From Fig. 1, the IOP1 exists below T/e2 ~-0.8 at el = 0 in the sc lattice 
and is dominated by two adjacent states. In Section 5 at least one h-bond 
percolated state has been rigorously proved to exist always below 
T/e2 ~0.33 at e~ =0.  From these results it follows that the IOP1 is the 
h-bond percolated state in one color. 
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At et = 0, the IOP2 is shown to exist at the intermediate temperatures 
between the IOP1 and the DP. Theorem 2 has revealed that if there are 
other phases than the DP and the COP, then they are all h-bond per- 
colated states. Since it has clearly been shown in the MC study that the 
IOP2 is different from the COP and the DP, and is dominated by three 
adjacent spin states, then the IOP2 is also the h-bond percolated state in 
two adjacent colors. 

From the last result it follows that the transition from the COP to the 
IOP2 is characterized only by the percolation of h-bonds in two adjacent 
colors; that is, it is topological without symmetry breaking. Thus we have 
verified the conjectures previously given by Ueno and Kasono. 

6.2. Phase Diagram of the O = 6  GCL Model  

We look at the qualitative properties of the phase boundaries of 
the lOPs from the percolation point of view. When one reduces ph 
keeping p, ,~ 1 (or, almost equivalently, one changes ~ ,  fixing T), the 
IOP1 should persist till some critical value of Ph/Pt (-rcl). This 
predicts T c ( I O P 1 - C O P )  =e~/ln r~.  This is in good agreement with the 
MC result: 

Tc(IOP1 - -COP)  ~ 3.40el (6.1) 

The coefficient in Eq. (6.1) gives rr --~ 0.745, which is reasonable. 
When one reduces Ph keeping Ph close to Pt (i.e., varying T), 

T c ( I O P 1 - I O P 2 )  may be determined by some value ofph/Pv (= re2). This 
predicts T c ( I O P 1 -  I O P 2 ) =  ( e2 -  e~)/ ln(1- re2 ). This is in agreement with 
the MC result 

Tc(IOP1 - IOP2) ~ 1.2(I - el) (6.2) 

where e 2 = 1 has been used. This gives a reasonable value of re2 ~ 1.3. 
Since the IOP2 made up of three different spin states tends to involve 

much more v-bonds than the IOP1, Pv should not be so small in the IOP2, 
which is consistent with the result obtained above (p,,>ph/1.3). At the 
phase boundary between the IOP2 and DP, three kinds of bonds may be 
involved with about equal weight. In fact the boundary lies between two 
lines T = l / l o g 2  and T = ( 1 - e ~ ) / q o g 2  as shown in Fig. l, which are 
obtained, respectively, from pflp~, = 1 and pj,/po= 1. It is remarkable that 
the critical point at el = 0  is very close to 1/log2 _~ 1.44, suggesting it is 
rigorous. 
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6.3.  S O S  M o d e l s  in d > 2  

It has been revealed in Section 6.2 that the IOP2 needs v-bonds to 
exist. Then it cannot exist in the 3D RGCL model; namely, only the IOP1 
can exist other than the COP. Thus the following theorem is suggested for 
the RSOS model in d >  2 from Theorems 1 and 3. 

T h e o r e m  5. There exists only the h-bond percolated state of one 
color, namely the IOP1, other than the COP with the transition tem- 
perature less than T/el =z/ ln  2 in the d-dimensional RSOS model where 
o~ > d > 2 .  

In other words, the RSOS model undergoes the preroughening tran- 
sition from the flat phase to the D O F  phase of the IOP1 type. Let us 
confine ourselves to d =  3 below. We can estimate this transition point 
making use of the result (6.1) obtained from the GCL model. When one 
approaches the RSOS model from the GCL model by taking the limit of 
pt.-*0, there is another way, which takes T ~ 0  and e l - * 0  together 
keeping K~ =el/T s o m e  constant and fixing e 2 = e 3 =  1, instead of the 
previous way, which takes e2 = e3 -* ~ keeping T constant. Both ways lead 
to the same partition function so long as Ph/Pt [ = e x p ( - - K t ) ]  agrees in 
them. Then they give the same value of preroughening transition point 
e~/Tor, which becomes in the sc lattice 

Tpr/ej ~ 3.40 (6.3) 

On the other hand, in the 3D discrete Gaussian model it has been 
proved that the surface tension is positive for T >  0, (z~) indicating the exist- 
ence of a rigid phase (with r --2),  i.e., the flat phase. Thus no IOP  is present 
for the k = 2 model. Then one naturally expects there is a boundary kc that 
separates SOS models in Eq. (4.1) into two: one phase transition in k>~ k c 
and no transition in k < k,.. One can approximately estimate kc making use 
of Fig. 1. The SOS model is considered to show approximately the same 
behavior as the GCL model with e2=e  3 =e~2 k if T,~e  2. Let us consider it 
explicitly for T/e,_ < 0.1. Then from Eq. (6.3) it follows that the model has 
a phase transition if Tc/e 2 = 3.4/2 k < 0.1. Thus kc -~ In 34/ln 2 ~ 5.1. 

7. O R D E R  P A R A M E T E R S  OF THE  P E R C O L A T E D  S T A T E S  

The novel type of percolated phases are characterized by nonzero per- 
p(c) We derive the expression colation probabilities of / -bonds in color c, ~1oo. 

of p(c) by applying an infinitesimal field. Let us denote the h-bond colors 
by the unit vectors (?(12) ..... C(QI)  and let (~(a/, a j ) = ( c o s  0u, sin 0,.j) be 
the variable of the h-bond color expressed in terms of spin variables. Let 
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us assume angle 0,j takes zc(2q + 1 )/Q for color c(qq + 1 ). Then its explicit 
dependence on a i and aj is given by 

Ou=f(n/Q)(ae+aj). for l a i - a j l ~ a - 1  (7.1) 
(n/Q for [ a , -  ajl = a - 1 

provided n 0. = h. We consider again our Q = 6 GCL model and apply a fic- 
titious external field H parallel to C(12) which acts on all the h-bonds 
uniformly, 

~(~ ,  if) = - y" I-1. C(a,, a:) 6(a~, 1 ) A(n u, h) (7.2) 
<U> 

Then Ph depends on / t .  C(a;, aj) and thus is replaced in Eqs. (3.4) and 
(3.8) by 

ph(H. Cu) = [exp( - K I  +f i l l .  Cv) - e x p (  -K2)] /A(H.  C v) (7.3) 

where A(I:I. Cu)=pt+ph(IT.  Cu)+pv. Here C 0. is the abbreviation for 
C(a;, aj). Then instead of Eq. (3.9b) we get 

1 (p/~S/,ao) ~'[ l p h ( a .  CU) (7.4) 

The probability of infinite clusters of h-bonds in C(12) is given by 

1 0 
p,~2)_ lim J i m  [ln Z(H)]  (7.5) 

H~0 

as verified below, where E=zN/2  for N--, oo. Using Eqs. (7.4) and (3.13), 
one gets 

P~,~' = lim ~ lirn. 1 ~ ~ (p,~n, 
Z,, a ,~) \P J 

x I-[ 1 - - 1 --ph(H.Co.) ~ ~., C(12).C,.j 
(/j> e_% Pv (ij> E--q'h 

1 (pl~b"QN,~(~,,, 
= l i m  o 2im Z }". Y'. I-[ 

X 1-I Z H i ~(r/iv,l)  

x I-[ Ph+  [exp(K2-Kl) ] (exp[ f lR-Ce( r , , ,  r ~ ) ] -  1) 
csa'h Pv 
1 

• Z br C(12). Cr u, r,) (7.6) 
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where Cr rv) is the color of the ( t h  h-bond cluster which connects the 
pth and vth /-bond clusters. The contribution of finite clusters in N-*  
vanishes as H--* 0 because the field does not work to select dusters in 
C(12) and the sum of Cr rv) vanishes when the relevant joint cluster 
takes all the spin states. On the other hand, when one compares the prob- 
ability of infinite clusters in C(12) with that of those in colors different from 
C(12), an infinite duster (or clusters) in C(12) survives because the relative 
probability of the latter to the former vanishes as 

lim lim [ e x p ( - K l + f l / 7 "  Cr 
n - 0  J r - ~  [ exp( -K1  +flH)--exp(--K2) J 

Then one is led to 

1 Z* x- br ~(('r C(12)) 
E r 

= lim 1_1_(/ )-..br163 (7.7) 

where ~ g  is the sum over infinite h-bond clusters and ( . - - ) , ~  the average 
with respect to/~(~; if). 

Even when one gets P"2 ) ' - 0 ,  one cannot determine in what color h o o  ~ -  

state the phase is. To investigate it, we apply external fields in more than 
one direction with the same strength. For instance, suppose one applies 

p(12) and ]0(23) In the case two fields in C(12) and ff(23), and measures -boo -boo. 
where only one of them is nonvanishing one gets an IOP1. Otherwise there 
occurs percolation of h-bonds whose colors are equal to or more than two 
in number. Then one has to increase more fields which orient in more 
directions. 

Further fluctuations of the IOPs are measured by the susceptibility 

Sh=  lim E(AP~7~AP(~)\~=ho~/ (7.8) 
N ~ o o  

where A p ( c )  - -  p ( c )  _ < p ( c )  \ 
~ - -  h o e  - -  -- h oo h oo } " 

8. ALGORITHM IN TERMS OF CLUSTERS 

It is useful first to see how thermal fluctuations appear in our descrip- 
tion. Although they generate v- and h-bonds, it is convenient to regard 
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them as generating only v-bonds, as shown below; this may be a viewpoint 
from the ordered world. Then they appear in two ways, as simply seen in 
the following expression of the partition function: 

Z = A e ~ (Pl+ p,,)go~o) (Ph + Pv)e'~')P~ c~ (8.1) 

In the first, v-bonds appear in 0 for ~0 4= 0, 1, as seen in the last factor of 
this equation. In the second, they appear in ~ for l- and h-bonds with 
relative probabilities p,,/p~ and PdPh, respectively. 

We propose a cluster algorithm of MC simulations for the GCL model 
based on the present description. In the first step, specify LP 0 and ~ after 
6 is given. Then determine a bond state ~ by generating v-bonds in -~o 
with probability Pd(P~+P,) and in .~ with P,,/(Ph +P,J, apart from the 
v-bonds automatically given for gu 4= 0, 1. Then specify the l- and h-bond 
clusters {p,}, {~h} from fi and the cluster spins {t,} including the one-site 
cluster spins from & 

In the next step, update {tu} to get a new spin state {~} by taking 
into account their interactions determined by ~,. To this end let us intro- 
duce cluster spins {So,} of the joint clusters {o~j~} defined in Section 3.4; 
here So, is defined by some reference direction of all the spins in a 
joint cluster with their relative spin directions {At} being fixed, {t,} = 
{At,+So~; #~coj~}. Then the next step is equivalent to updating {S~} 

t independently to get a new spin state 0 ' =  {t,}. Then return the first step 
and keep repeating this process. 

There is a variation of the above algorithm. This treats the system as 
interacting /-bond clusters by eliminating h- and v-bonds. To this end we 
derive below the expression of Z written in terms of only /-bond clusters. 
Using Eq. (3.4), one gets 

z = , :  Z Z H 0/ 
8 ~ <O'>~.oo't 

x 1] ~'. {P,,f(a,j, 1)A(nu, h)+p~A(no',v)} 
( / j >  e .L:'/c nij#l 

= A g E  I-I Z YI pt6(~zo, o) 
.Lt'! i e ~ %  oi ( / j > e - ~ /  

x H ~ ~ (phf(cro., 1)+p~) (8.2) 
iE..~,, o~ <q>G.~t,- 

Then this is written in terms of/-bond clusters as 

z-- l po:y rI x., u~,kPo:' Z I"-[ E I-'[ e(K2-K')S'"3(Z.., I) (8.3) 
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where S~,v is the number of edges whose sites belong to the /~th and 
vth clusters. 

In the first step, after having specified Le o given #, determine one of the 
/-bond configurations in Leo (which forms a lattice graph ~ )  by generating 
each /-bond with probability Pt/(PJ+Pv). Then specify the clusters 
including the one-site clusters together with cluster spins {vu} and calculate 
{ S,,}. In the next step, making use of the measure in Eq. (8.3), perform the 
standard MC simulation for the interacting cluster system given by {v~} 
and { S,,}, for an appropriate time. After getting in thermal equilibrium by 
repeating this process, save a considerable amount of data on L~. Then one 
can get data on s from them by using the first step of the first algorithm. 

9. C O M M E N T S  ON RELATED MODELS 

9.1. Comments on the GCL and RSOS Models in 
T w o  Dimensions 

In the 2D GCL model including the ordinary one, it has been estab- 
lished that the model has an intermediate phase of the KT type for Q > 4 
and this phase is equivalent to the rough phase/15'19~ Thus this is an 
h-bond percolated state with the full color symmetry of h-bonds, as shown 
in Section 4. 

Recently Rommelse and den Nijs studied the RSOS model with NNN 
interactions on the square lattice and found a novel type of intermediate 
phase called the disordered flat (DOF) phase/22~ In this phase only two 
adjacent heights are dominant. From Theorem 2, it is certain that steps in 
one color are percolated, i.e., the DOF phase is the IOP1 in d =  2. This is 
attributed to the NNN interactions because they couple step contours of 
the same color. ~22) 

This phase is also of considerable interest from another point of view: 
it is equivalent to the Haldane phase in the corresponding S =  1 
antiferromagnetic quantum chain; in this phase the excitation spectrum has 
a (Haldane) gap. t23) Tasaki already proposed a percolation picture of 
phase transitions in the same quantum model/24) 

Recently Shioda and Ueno studied the Q = 6 GCL model with NNN 
interactions by the twist method, employing relatively large-scale Monte 
Carlo simulations, t25) The interactions of the model are given by 

VI(GO. ) : •nl 6(0-U, 1) +,gn2[6(0-/j, 2) +6(0"0- , 3)] 

V2(0"kl ) : 8 n n [ 6 ( O ' k / ,  2)+  6(akl, 3)] 
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with 0 < e,l < e,2 and e,n > 0 for N N  and N N N  interactions, respectively. 
The phase diagram of T versus e,~ with e.2 = e, ,  = 2.0 is quite similar to 
that of the 3D GCL model ~13~ and also of the RSOS model, r within the 
range of calculations (0 ~< e,l < 1.6). Shioda and Ueno found an IOP2 with 
~ 0 . 1 ,  but neither IOP1 nor the rough phase, though they cannot be 
ruled out in a narrow region at very low temperatures. 

To get the RSOS model from the GCL model, we take the limit ofpo 
[ocexp(--enz/T)]- '+ 0 in the same way as done in Section 6 for the 3D 
models. However, since the N N N  energy parameter e,n is kept fixed, one 
is led to the RSOS model with the infinite N N N  interaction. From the 
result of the GCL model the preroughening temperature for e , .  = oo is 
estimated as 

Tpr/e,,1 .~ 1.55 (9.1) 

This is quite consistent with the phase diagram of the RSOS model/22~ 

9.2. Comment  on the Chiral Clock Model  

It is interesting to consider the chiral clock model (27) for a comparison 
with the GCL model. We estimate the stiffness exponent g, of the incom- 
mensurate (IC) phases, making use of the results obtained previously. The 
Hamiltonian of this model on the simple square and cubic lattices is given 
as 

2rr 
H = - ~ cos (a i - a j -  J..s (9.2) <ij) -a  

where J = A ~  for 0 < A  < 0.5 (~ is a unit lattice vector) and '~u is the 
unit vector directing from site i to j in a nearest neighbor. At A = 0.5, the 
degree of ground-state degeneracy is highest, but its entropy is vanishing, 
O(L ~ -a), whereas S = O(L ~ in the GCL model at e~ = 0. As is well known, 
the IC phase is well described by an array of extended domain walls per- 
pendicular to ~; the phase of each domain is rotating with a wave vector 

#llJ. 
In d =  2, the domain walls in the IC phase are floating with no long- 

range order. Using the free energy F,,(T, L)  of the untwisted system with 
average wall number n obtained in the free fermion approximation, ~26) it is 
easy to calculate the stiffness exponent. We give only the result for the 
stiffness free energy for Q > 2, 

AF( T, L)  = F,,+ ,( T, L ) - F , , ( T ,  L)  = O(L ~ 

Thus, one gets ~ = 0 as expected, indicating the IC phase is a critical state. 
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In d =  3, similarly one can estimate ~k, making use of a phenom- 
enological free energy for a given mean wall separation l=L/n. (28) Then 
one gets the stiffness free energy for the increase of one wall for Q/> 6, 
AF= O(L). Therefore one gets ~ = 1, which indicates the XY-like behavior. 
However at A = 0, that is, in the ordinary clock model, Ueno and Mitsubo 
found the IOP1 at intermediate temperatures by the MC twist method, (]2) 
against theoretical expectation. (28) Because of thermal fluctuations, this 
IOP1 is expected to extend to some finite value of A and have a phase 
boundary with the IC phase. It is reasonable that both phases are different 
in view of the extreme difference in the degrees of degeneracy. 

10. DISCUSSIONS OF lOPS 

10.1. Interactions Between Random Surfaces of h-Bonds 

There is competing or frustration in interactions via h-bonds among 
/-bond clusters in certain kinds of configurations. Since clusters are variable 
in shape and size, there are many configurations such that only three 
/-bond clusters are close to each other: clusters D, C, E in Fig. 6. Then all 
of them cannot be connected by h-bonds, because three different pairs 
among the clusters cannot be all ru, = 1. They are competing. 

This property can be put in another way, i.e., as interactions between 
h-bond surfaces. Suppose three /-bond layers are formed and neighboring 
layers are separated by h-bond surfaces. Let them be in states 1, 2, and 3. 
Further suppose part of the outer layers push out the internal one and get 
in touch with each other. Then the above competing effect between/-bond 
layers works as repulsive interactions between neighboring h-bond surfaces 
in different colors c(12), c(23). On the other hand, when the spin states of 

I I I 2 
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4 4 4 
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o . . . . .  I 3  
4 

Fig. 6. Bond and spin configurations which bring about competing interactions among three 
/-bond clusters denoted by C, D, and E. 

822/80/3-4-24 



868 Ueno 

the layers are 1, 2, and 1, there is no such an effect. Thus one can regard 
that the surfaces in the same color c(12) have attrative interactions from a 
relative point of view. Therefore the IOP1 is preferred to the IOP2 and 
others in d =  3. However, as temperature gets higher (or po increases) the 
competing effect becomes weak enough to allow the IOP2 to appear. The 
strength of these effective interactions seems to depend strongly on dimen- 
sion; it is stronger in d =  3 than in d =  2. 

10.2. Large-Entropy Contribution 

Entropy contribution is considered indispensable to the occurrence of 
the IOPs. As one sees in the proof of Theorem 3, the number of spin con- 
figurations in the h-bond percolated state is overwhelming compared with 
the COP even if the phase space is limited; this requires Ph ~ P~ or T>> e I. 
Also indispensable is the energy barrier with height e 2 that protects the 
IOPs from v-bonds, i.e., getting disordered; this is effective till Pv is close to 
1 or T is close to e2, from the result in Section 6.2. 

Let us estimate the average number of h-bonds in the I O P I  at el = 0 
of the GCL model in the sc lattice when Pv '~ 1. Then we can approximate 
that the IOP1 consists only o f / -  and h-bonds and the / -bond  clusters are 
only in two colors, say c(1) and c(2). Then this is the random site percola- 
tion problem in d =  3 with concentration p = 0.5. Thus the numbers of 
bonds are B~ = Bh = �89 = -~N. Since Pc - 0.311 < p = 0.5 < 1 - pc, ") two 
infinite clusters of both colors can coexist, so that h-bonds between them 
are necessarily percolated. 

Since p is not close to Pc, most of the/ -bonds  belong to either of the 
infinite clusters. Then most of the h-bonds connect those /-bonds which 
belong to different infinite clusters. Although h-bonds form surfaces, their 
number is extremely large. Therefore we conclude that the surface of the 
infinite cluster of h-bonds is extremely crumpled and wrinkled with fractal 
dimensions ds= 3. Such configurations of the surfaces yield large entropy. 
Thus we consider the IOP1 is the order due to entropy gain. (8"13'291 We 
also consider the IOP2 to be so. 

10.3. Excitations and the Stiffness Exponent 

The MC study (~2'13) has revealed that the excitations in the IOPs have 
a peculiar structure, which is closely related to the nonintegral stiffness 
exponent. Let us confine ourselves to the IOP1 of the GCL model. Suppose 
the IOP1 consists of infinite clusters of states 2 and 3, i.e., colors c(2) and 
c(3), and an / -bond  cluster in c(1) is excited in the infinite cluster of color 
c(2). This finite cluster is confined almost within this infinite cluster. Since 
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there are strong repulsive interactions between h-bond surfaces of different 
colors as already discussed, it can hardly get in touch with another infinite 
cluster. In this sense excitations are protected by buffers of h-bond surfaces 
which surround, them. If the linear size Lex of an excited cluster is large 
enough, then the interaction energy becomes about e2L~x. Here el is 
irrelevant because its effect is lost by thermal fluctuations, as verified by the 
fact that there is no stiffness for the lowest twist angle ~b = re/3 (as given in 
Section 2). The present explanation is consistent with the profiles of the 
twisted system. (12'13) Similar excitations are also expected in the IOP2. 

10.4. Nonlocal  Character  of the Order Parameters  

It is worth pointing out a remarkable property of the order parameters 
of the IOPs. Percolating quantities are of nonlocal character, in the sense 
that one cannot determine locally whether the percolation of the element 
of interest occurs or not. In particular, this character becomes important in 
the case that the onset of percolation does not break the macroscopic sym- 
metry of the system, i.e., symmetry of / -bond colors. The transition between 
the IOP2 and the COP is such a case, as already explained in Section 6. 
Then one has no means to observe the order parameter directly unless one 
could manage to generate a field in Eq. (7.2). 

This remarkable property has already been known for the den Nijs- 
Rommelse order paraeter c22) of the Haldane phase in the S = 1 AF quan- 
tum Heisenberg chain, t23) It is no wonder, because this model is a quantum 
version of the RSOS model with N N N  interactions and the Haldane phase 
corresponds to the D O F  phase which is of the IOP1 type, as discussed in 
Section 9. 

10.5. Universal  Behavior of the lOPs 

The IOPs have already been found in other d = 3 models, such as the 
AF Potts models, a stacked triangular AF Ising model, and a stacked 
square frustrated Ising model, including the ordinary Q = 6 clock model. 
Details are summarized in ref. 13. For the models whose order parameter 
space of the COP,is  plane (dop = 2), the stiffness exponents of these IOPs  
are close to ~---1.2, much smaller than ~b = 2 of the COP, but clearly 
larger than ~k = 1 for the X Y  model. On the other hand, the other models 
with different values of dop have different values of the stiffness exponent: 

~ 1.8 and 0.7 for dop = 3 and 4, respectively. (8) Thus these values suggest 
universality. 



870 Ueno 

10.6. Critical Properties 

It is natural to expect distinct critical properties because the IOPs are 
essentially different from the known ordered phases even if the topological 
transition between IOP2 and COP is put aside. There are some numerical 
calculations and experiments of critical exponents. In our description the 
phase transitions studied in them are all those between disorder and IOP1 
or IOP2. For the Q = 3 AF Potts model where only the IOP1 was observed, 
Ueno et al. (8) obtained the following values: 

v = 0.58 ___ 0.01, fl = 0.34 ___ 0.02, F = 1.10 -I- 0.02 

with To= 1.235+0.005. They also obtained 0c=0.15, which is much less 
accurate. For the same model, Wang et aL (9) obtained 

v = 0.66 + 0.03, ),= 1.31 -t-0.09 

with T c = 1.2259 + 0.0007. They are close to those of the X Y  universality 
class (v =0.669, fl=0.346, ), = 1.316). 13~ Others also studied such models 
with Z 6 symmetry to get estimates close to these. (31) The differences 
between both sets of values are so large that it is difficult to attribute them 
to the error of Tc in the former. (9) Rather, it is reasonable to attribute them 
to whether or not the anisotropy has been manifest and thus effective in the 
calculations. In the former study it was dearly observed below T~ in the 
same manner as shown in Section 2 for the GCL model, and the estima- 
tions were done there. On the other hand, in the latter, the calculations 
were done in the region where the anisotropy is lost, although they 
observed it fairly below T c. 

Recently Ajiro et  al. and Kadowaki et al. performed experiments on 
CsMnI3, which undergoes two phase transitions. ~32'33) Both are considered 
equivalent to the systems with Z6 symmetry. They obtained 

v = 0.59 + 0.03, f l=0.32 0.01, ~,= 1.12-t-0.07 

v = 0.56 ___ 0.02, fl = 0.35 _+ 0.01, ~, --- 1.04 _ 0.03 

for the higher and lower transitions (T~ = 11.2, 8.2 K), respectively. They 
are in good agreement with the values obtained by Ueno et  al. c8) within the 
errors of each study, obviously different from those of the X Y  class. 

Some exponents were also calculated for other models by the MC 
twist method as follows. The stacked triangular AF Ising model in d =  3 
undergoes a phase transition from IOP2 to disorder at Tc---3.64, 
v = 0.57 + 0.03, and ~ = 0.21. (H) The Q = 6 clock model has a phase tran- 
sition at T~ = 3.04 (in the stacked triangular lattice) between IOP1 and 
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disorder; v = 0.57 + 0.03 and 0t = 0 . 1 8 .  (12) Though the values of 0~ are much 
less accurate, they are consistent with hyperscaling, dv  = 2 -  oc. 

The results obtained rigorously in Section 6 together with those of the 
stiffness exponent are strong evidence against the X Y  universality class. 
This is because they rule out order of X Y  character, which should have 
~ =  1 for any twist angle; in other words, IOP1 and IOP2 should be 
degenerate with each other. 

11. S U M M A R Y  

Introducing physical connections and disconnections, we have for- 
mulated a new description of the GCL model in terms of them. Based on 
the description, we have proved that the IOPs found by the MC studies are 
a novel type of percolated state, by the following procedure. 

We introduced PC-type models with discrete single-valued variables 
and proved that only COP and/or h-bond percolated state(s) are possible 
to exist in these models (Theorem 2). For the RGCL model, which is one 
of the restricted models of PC type (Theorem 1), we proved on the basis 
of Theorem 2 that it has the COP and at least one h-bond percolated state 
at lower and higher temperatures, respectively, in a large range of d and Q 
(Theorem 3). In the simplest case (el =0 )  of the GCL model, we proved 
on the basis of Theorem 3 that percolation of h-bonds occurs at low tem- 
perature in the same range of d and Q as for Theorem 3 (Theorem 4). 
From Theorem 4 and the MC results, we verified the previous conjectures 
on a simple version of the six-state GCL model in d =  3 that the IOP1 and 
IOP are h-bond percolated states of one color and two adjacent colors, 
respectively, and that the transition between the COP and IOP2 is charac- 
terized only by h-bond percolation. We also succeeded in explaining the 
phase diagram of the same model obtained by the MC twist method, in 
terms of bond percolation. 

The present description connects the RSOS and GCL models in a cer- 
tain limit. Using this relation, we estimated the preroughening temperature 
in d = 3 to be Zpr  "~ 3.40el. Further, it follows from the results on the IOP1 
and IOP2 obtained in Section 6 that only the IOP1 other than the COP 
exists in the RSOS model for finite d >  2 and Q >  Qo (Theorem 5). 

Finally, we note some important aspects of the present study. 

1. Genuine local forces (i.e., l- and h-bond variables) are newly intro- 
duced degrees of freedom, namely, hidden variables. Although the quantity 
of percolated/-bonds is given by magnetization, that of percolated h-bonds 
is completely hidden (though the onset may be detected through 
magnetization); that is, the IOPs are hidden orders. It is the symetry of the 
topological partition of the system that is relevant to the hidden orders. 
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2. The rough phase may be regarded as a special case of the IOPs, 
namely, as a percolated state of surfaces where interactions between sur- 
faces are insufficient. 

3. One cannot directly observe h-bonds, thus percolation of h-bonds. 
It is surprising and might be very important to recognize that there can be 
orders that cannot be observed directly. A good substitute for it is the stiff- 
ness amplitude A(T) of the stiffness free energy with a nonintegral value of 
exponent. This quantity seems very difficult but possible in principle to 
observe. 

4. The present approach from local force has been shown to be more 
fundamental than that from the order parameter in a general case of 
models with discrete symmetry. 
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